If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-7z+4=0
a = 1; b = -7; c = +4;
Δ = b2-4ac
Δ = -72-4·1·4
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{33}}{2*1}=\frac{7-\sqrt{33}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{33}}{2*1}=\frac{7+\sqrt{33}}{2} $
| 3(p+2)=15 | | 5( | | 61-x=126 | | (13b-2)-6(2b+2)=-7 | | 5/7+x=43/2 | | 16t^2+194t+69=0 | | 12=d/2-(-8) | | 5/6p+1/10p-2/3p=1/3 | | -2x-2=-3x+9 | | 7/20=-1/5k-1/2k | | 8-3x^2=-121 | | h+4/3=4 | | a-6/12=a-2/6 | | 111-u=242 | | 3.2q-1.6-3.9q=-1.7q-4.8 | | 6^3x^+2+4=200 | | 2/3x+8=7/3x•2 | | -2/3=1/2y-3/5 | | (X-1)+x+(x+1)=54 | | 6^3x+2+4=200 | | 6+m-4m=180 | | 150m-125m+33600=35700-150m | | 3.2q-1.6-3.9q=1.7q-4.8 | | 5=v-19 | | 42x^2-135x-3x^2=0 | | 96=56+5/4x | | 5x+(3x)2x=-5 | | 540=(x+25)+(x+60)+(x+50) | | 16x^2-62x-45=0 | | b-8=-1 | | 2q2+4q-1=7q+1 | | -22=-2(-8+k) |